If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.75x^2-20x+91=0
a = 0.75; b = -20; c = +91;
Δ = b2-4ac
Δ = -202-4·0.75·91
Δ = 127
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{127}}{2*0.75}=\frac{20-\sqrt{127}}{1.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{127}}{2*0.75}=\frac{20+\sqrt{127}}{1.5} $
| -16x+13=-50-7X | | -3/4(16x+8)=19-10x-3) | | 4x^2+90x-900=0 | | 3x–6=13x–31 | | 4x^2+90x+900=0 | | x+2(3x^2-5)=12x | | 4x-(x-1)=12+6(x-1) | | 3/4(16+8)=19-(10x-3) | | 0.25/x=100 | | 2×(x-1)-3×(2x+5)=7×(x-1) | | -3x+7=2x+22 | | x2=11x=24 | | 7x(2x-1)^2=1 | | 5x4=30 | | 4(3-3x)=5(2-2) | | 2x+7=2+x | | 7t÷2=7 | | 3=(8x+1)/2 | | 2x+4=-2x+16 | | 16x^2-41x-25=0 | | 2(s-4)=10 | | 3.4x+7.1=2.5x+8 | | 50+30x=320 | | 2r+4r=10 | | 10x+12=2x | | 3q-5=10-2q | | 9x–10=100 | | 3x/4-3=15 | | 14x+28=2x | | x^2+20x+250=0 | | (2p)/3-(p+1)/6=2 | | 2p/3-(p+1)/6=2 |